
2. S. Saito and T. Someya, "Self-excited vibration of a rotating hollow shaft partially 
filled with liquid," Trans. ASME. JournAl of Mechanical Design, 102, No. i, (1980). 
(1980). 

3. N.V. Derendyaev and V. M. Sandalov, "Stability of steady-state rotation of a cylinder 
partially filled with a viscous incompressible liquid," Prikl. Mat. Mekh., 46, No. 4 
(1982). 

4. S.V. Malashenko, "Some experimental investigations relating to the rotation of bodies," 
Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1960). 

5. M. Abramovits and I. Stigan (eds.), Handbook of Special Functions [in Russian], Nauka, 
Moscow (1979). 

6. V.V. Bolotin, Nonconservative Problems in the Theory of Elastic Stability [in Russian], 
Fizmatgiz, Moscow (1961). 

FLOW SYMMETRY DISTURBANCE DUE TO THERMAL INSTABILITY 

V. V. Grachev and ~. N. Rumanov UDC 532.135 

The instability of the laminar mode associated with the origin of turbulence is usually 
inessential for flows of a strongly viscous fluid since the Reynolds numbers are small. In 
the forefront for such flows is the thermal instability detected and investigated in [I, 2] 
and elsewhere. It was shown in [2] that the thermal instability holds for the pressure drop 
Ap determined and results in jumps in the flow rate for definite critical values of Ap (hy- 
drodynamic inflammation and extinction). 

Meanwhile~ a thermal instability also occurs in electrical systems even for a fixed 
current (the analog of the mass flow in hydrodynamics), where the development of the in- 
stability results in inhomogeneous [3] or nonsynmaetric [4] modes. 

Disturbance of the flow symmetry through a pair of tubes (connected in parallel) is 
considered in this paper for a fixed total mass flow rate. It is shown that in contrast to 
an analogous electrical system [4], the disturbed symmetry is restored in the case under 
consideration as the flow rate increases. Restoration of the symmetry is due to the con- 
vective nature of the instability. 

I. The flow of a strongly viscous incompressible fluid through two cylindrical tubes 
connected in parallel and with a given total flow rate is considered. As the fluid moves, 
heat is liberated because of dissipation and is eliminated in the tube walls. 

The following equations hold for t:ubes connected in parallel 

l Z 

0 0 

where &p is the pressure drop between the entrance into, and exit from the tubes, r is the 
tube radius, I is the tube length, z is the coordinate along the tube axes, p is the dynamic 
viscosity, TI and T2 are the fluid temperatures, QI and Q2 are the mass flow rates, the sub- 
scripts I and 2 refer, respectively, to the first and second tubes, and Q is the total mass 
flow rate which is a given quantity. As ~egards the equation in the temperature, then under 
the conditions 

Pr  = ~/(9%) >> I ,  Pe  = Ql/(~rZ%) >> t ,  Bi = ~ @ 0 2 )  << 1, 

where • is the thermal diffusivity coefficient, p is the density, c is the specific heat of 
the fluid, ~ is the coefficient of heat transfer, Pr is the Prandtl criterion, Pe is the 
Peclet criterion, Bi is the Biot criterion, they take a form analogous to (1.11) in [2] for 
both tubes. In dimensionless variables 
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O = _ ~ _ 7 ~ ( T _ T o ) ,  ~=~, ~= t to 
0 to 

the system under consideration becomes 

8z~ (r~) u 
cpr ~ RT~ 

where 

Ox 
0Oi 2 -O~ + ~ i ~  = ~ i  e - -  BO~, i = 1, 2; ( 1 . 1 )  

1 1 

to1 S e-~ = m2 5 e-%@~; ( 1 . 2 )  
0 O 

m = ~1 + ~~ (I .3 )  

~ = sl ,  (%), u ~6& (%) v 
cpar 4 RT~ Qi; B----- (cp)Ur ~ /~T~ (Z; 

= ~0 exp (U/RT);  

and To i s  t h e  t e m p e r a t u r e  o f  t h e  s u r r o u n d i n g  m e d i u m .  The e x p a n s i o n  o f  t h e  e x p o n e n t i a l  exp  
(U/RT) i n  [ 5 ]  i s  u s e d  f o r  t h e  n o n d i m e n s i o n a l i z a t i o n .  

2 .  I f  t h e  c o n d i t i o n  

~1 ~ co Pe r 2 rcp 7~r21 
T--~ -B= Bi 2l 'z<<t '  Tl~'~--~ --' T 2 ~  Q (2.1) 

is satisfied, where TI is the characteristic heat-transfer time, T2 is the fluid residence 
time in the tube, then the entrance section of the tube whose length is ~0 % TI~ << I can be 
neglected and the temperature of the fluid along the tube can be considered constant, and 
0Oi/a~ =0. Then the system (1.1)-(1.3) results in the form 

dOl = •176 (e~ + e%)-2 _ 01; (2.2) 
d~ ~ 

do d o = (o~ + - %- ( 2 . 3 )  

H e r e  t h e  f l o w  r a t e s  w1 and  ~2 a r e  e x p r e s s e d  i n  t e r m s  o f  t h e  t o t a l  f l o w  r a t e  b y  u s i n g  ( 1 . 2 )  
and  ( 1 . 3 )  and  t h e  new d i m e n s i o n l e s s  t i m e  T o = B~ i s  i n t r o d u c e d  w h i l e  t h e  p a r a m e t e r  i s  

@ QZ u 4~(ro) 
B RT~ ~rSa " 

An i n v e s t i g a t i o n  o f  t h e  p h a s e  t r a j e c t o r i e s  o f  t h e  s y s t e m  ( 2 . 2 )  and  ( 2 . 3 )  showed  [4 ]  t h a t  
f o r  a n y  v a l u e s  o f  t h e  p a r a m e t e r  • a s y m m e t r i c  s t a t i o n a r y  mode O1 = O2 e x i s t s  t h a t  i s  s t a b l e  
( s t a b l e  " n o d e " )  f o r  x ~ 4 e  and  u n s t a b l e  ( " s a d d l e " )  f o r  • > 4 e .  M o r e o v e r ,  f o r  n > 4 e  two 
more  n o n s y m m e t r i c  O 1 ~ : O 2  s t a b l e  s t a t i o n a r y  m o d e l s  ( s t a b l e  " n o d e s " )  e x i s t .  F o r  • ~ 4 e  
the nonsymmetric modes merge with the symmetric mode. 

Therefore, there is a critical value of the parameters ~, =4e and a correspondingly 
critical value of the total mass flow rate Q,. If Q < Q,, then the fluid temperatures in 
both tubes are equal and the symmetric mode Ql = Q2 = Q/2 is realized. If Q > Q,, then the 
stationary mode with different flow rates and temperatures is unstable. The spontaneous 
disturbance of the flow syrmnetry occurs, the system goes over into a new stationary mode 
when the fluid temperatures in the tubes are distinct, and a major part of the fluid flows 
through the tube in which the temperature is higher. The disturbance of the symmetry occurs 
for Q = Q, in the soft mode. 

3. The inequality (2.1) is not satisfied for high flow rates. In this case heat en- 
trainment by the fluid stream becomes essential, and it is already impossible to neglect the 
convective term in (1.1). 

In the opposite limit case TI/~2 ~ I, the heat transfer in the tube walls can be ne- 
glected, B@/= 0. Then the system (1.1)-(1.3) with the boundary condition 

~ = 0:@, = 02 =0 (3.1) 

40 



o~9.- 

0~6 

0 7 $ 

~) g/co 

4 5 (; l,n 

Fig. 1 

~ r l  6 ,3  �9 

7- 

6 + 

5 -  

4 -  
f x . _ j  / 

i' 

- - - -  I . . . .  F "  '~ ' - - - F - - - - " -  
4 5 6 7 LnB 

Fig. 2 

has the unique stationary solution O1 ~- 02 --- in ('| ~r c0~/2), where this solution is stable to 
small perturbations. 

Therefore, only one (symmetric) stationary mode is possible. Hence, a second critical 
value of the total rate Q** should exist for which the symmetric mode again becomes stable. 

Restoration of the flow symmetry is due to the convective nature of the thermal in- 
stability in this system. In the domain of high flow rates, perturbations that do not suc- 
ceed in being developed are carried outside the system limits. 

4. To find the conditions for restoration of flow symmetry a numerical solution of the 
problem was carried out on a computer. 

Stationary solutions of the system (1.1)-(1.3) with the boundary conditions (3.1) were 
found. The stability of the stationary solutions was investigated by using a linearized sys- 
tem of equations for the small deviations vi(~)e %~, wie%T from the stationary solutions @i(~), 
~i (i = I, 2): 

dr+. (/, B r )v~+ + 

1 t 

e-O2d~, 
o o 

w l - F w ~ = O ,  ~ = 0 :  v 1 - - v  2 = 0 .  

The results of the numerical computation are represented in Figs. I and 2. The depen- 
dences of the ratio between the mass flow rate through one of the tubes and the total given 
flow rate on the magnitude of the total flow rate are shown in Fig. I for different values 
of the heat-transfer coefficient B. 

For B = 100 and ~ < ~, = 26.47 only a symmetric mode with equal flow rates wl = ~2 = 
~/2 exists. 

For w = ~, the spontaneous disturbance of flow symmetry occurs in the soft mode. Fur- 
thermore, as the total flow rate increases the flow rate in one of the tubes rises while it 
drops in the other. For ~ = ~** = 149.8 the symmetric flow mode becomes stable, and two other 
unstable nonsymmetric modes occur. As the total flow rate increases further, the stable and 
unstable nonsymmetric modes approach each other, and merge for ~ = ~*** = 617.6 and vanish. 
Hence, if the total flow rate diminishes, then disturbance of the symmetry will occur in the 
hard mode for ~ = ~**. 

As the heat-transfer coefficient B diminishes, the differences (~** -- ~,) and (~*** -- 
~**) diminish. For B < B, = 58.82 and any values of the total flow rate, only a symmetric 
flow mode is possible, the critical phenomena are degenerate. 

Partition of the plane of the parameters B, ~ into domains with distinct stationary 
modes is represented in Fig. 2. Only a symmetric stable flow mode exists in domain I, an 
unstable symmetric mode and two stable nonsymmetric modes in domain 2, and a stable symmet- 
ric mode and four nonsymmetric modes, two of which are stable and two unstable, are in do- 
main 3. The curve KLN corresponds to the stability boundary for the symmetric mode, and the 
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curve LM to merger of the nonsymmetric modes and their disappearance. The dashed line cor- 
responds to an approximate condition for disturbance of the symmetry ~ =4e) according to 
(2.2) and (2.3). 

It is interesting that the instability domain of the symmetric mode NLK corresponds to 
the bistability domain obtained in [2]. 

Taking account of the results obtained for the flow considered, it can be assumed that 
a thermal instability can result in flow partition into a jet in the filtration of a strongly 
viscous fluid in a mode with determination of the total flow rate. Thermal wave propagation 
across the filtering stream is possible in case of head determination. 

The authors are grateful to A. G. Merzhanov for interest in the research. 
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MIXED LAMINAR CONVECTION AROUND A VERTICAL CYLINDER WITH A 

CONSTANT SURFACE TEMPERATURE 

Yu. P. Semenov UDC 536.244 

The heat exchange accompanying mixed convection around vertical cylinders plays an im- 
portant role in many technological processes and in the operation of power plants. However, 
this problem has not been studied to a sufficient extent. Most papers concerned with mixed 
laminar convection are devoted to processes on vertical flat surfaces [I, 2] and horizontal 
cylinders [3]. The heat exchange due to mixed convection from vertical cylinders has been 
investigated in individual papers only. The problem of concurrent mixed convection from a 
vertical cylinder with a constant surface temperature is solved in [4] by means of the method 
of local non-self-similarity, which is also used in [5] for solving this problem for a con- 
stant thermal flux qw" Mixed convection from a vertical cylinder for qw = const was investi- 
gated experimentally and numerically in [6, 7]. Thus, mixed laminar convection from vertical 
cylinders for t w = const has been investigated only in [4]. However, the mixed convection 
parameter varied there in the limited range 0 ~ Gr/Re 2 ~ 2; generalized theoretical relation- 
ships were not derived, and only concurrent convection was contemplated. This made it neces- 
sary to undertake the investigation described here. 

Mixed convection from vertical cylinders constitutes a non-self-similar problem. The 
method of local n0n-self-similarityusedin [4, 5] is approximate. In order to obtain the 
solution for the entire region of mixed convection, it is necessary to solve the boundary 
layer equations written in terms of self-similar variables of forced motion in a region close 
to the forced motion and the boundary layer equations written in terms of self-similar vari- 
ables of natural convection in a region close to the natural convection. In this case, it 
is more advisable to obtain directly the numerical solution of the boundary layer equations. 

The method described in [8, 9] is used for solving numerically the problem of mixed con- 
vection from a vertical cylinder. This method was used in [7] for investigating mixed con- 
vection from a vertical cylinder for qw = const and in [10] for investigating natural con- 
vection. 
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